Unsupervised and Semi-supervised Anomaly Detection with LSTM Neural Networks
نویسندگان
چکیده
We investigate anomaly detection in an unsupervised framework and introduce Long Short Term Memory (LSTM) neural network based algorithms. In particular, given variable length data sequences, we first pass these sequences through our LSTM based structure and obtain fixed length sequences. We then find a decision function for our anomaly detectors based on the One Class Support Vector Machines (OC-SVM) and Support Vector Data Description (SVDD) algorithms. As the first time in the literature, we jointly train and optimize the parameters of the LSTM architecture and the OC-SVM (or SVDD) algorithm using highly effective gradient and quadratic programming based training methods. To apply the gradient based training method, we modify the original objective criteria of the OCSVM and SVDD algorithms, where we prove the convergence of the modified objective criteria to the original criteria. We also provide extensions of our unsupervised formulation to the semisupervised and fully supervised frameworks. Thus, we obtain anomaly detection algorithms that can process variable length data sequences while providing high performance, especially for time series data. Our approach is generic so that we also apply this approach to the Gated Recurrent Unit (GRU) architecture by directly replacing our LSTM based structure with the GRU based structure. In our experiments, we illustrate significant performance gains achieved by our algorithms with respect to the conventional methods.
منابع مشابه
Anomaly Detection for Temporal Data using Long Short-Term Memory (LSTM)
We explore the use of Long short-term memory (LSTM) for anomaly detection in temporal data. Due to the challenges in obtaining labeled anomaly datasets, an unsupervised approach is employed. We train recurrent neural networks (RNNs) with LSTM units to learn the normal time series patterns and predict future values. The resulting prediction errors are modeled to give anomaly scores. We investiga...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملToward Supervised Anomaly Detection
Anomaly detection is being regarded as an unsupervised learning task as anomalies stem from adversarial or unlikely events with unknown distributions. However, the predictive performance of purely unsupervised anomaly detection often fails to match the required detection rates in many tasks and there exists a need for labeled data to guide the model generation. Our first contribution shows that...
متن کاملAn unsupervised long short-term memory neural network for event detection in cell videos
We propose an automatic unsupervised cell event detection and classification method, which expands convolutional Long Short-Term Memory (LSTM) neural networks, for cellular events in cell video sequences. Cells in images that are captured from various biomedical applications usually have different shapes and motility, which pose difficulties for the automated event detection in cell videos. Cur...
متن کاملModeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement.
Clinical electroencephalography (EEG) records vast amounts of human complex data yet is still reviewed primarily by human readers. Deep belief nets (DBNs) are a relatively new type of multi-layer neural network commonly tested on two-dimensional image data but are rarely applied to times-series data such as EEG. We apply DBNs in a semi-supervised paradigm to model EEG waveforms for classificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.09207 شماره
صفحات -
تاریخ انتشار 2017